

- Functions
- Introduction
- One-to-One and Onto Functions
- Inverse Functions and Compositions of Functions
\square Sequences and Summations
Dr. Mohamed A.bdel-Aal
Discrete Mathematics

Function

Let A and B be nonempty sets. A function from A to B is an assignment of exactly one element of \mathbf{B} to each element of A. We write $f(a)=b$ if \mathbf{b} is the unique element of B assigned by the function f to the element a of A . If f is a function from A to B , we write $f: A \rightarrow B$.

Functions are sometimes also called mappings or transformations
If f is a function from A to B , we say that A is the domain of f and B is the codomain of f. If $f(a)=b$, we say that b is the image of a and a is a preimage of b. The range, or image, of f is the set of all images of elements of A. Also, if f is a function from A to B , we say that f maps A to B .

Examples

Lecture 5

Example of the floor function

- $f: Z \rightarrow Z$, assigns the square of an integer to its integer, $f(x)=x^{2}$
Domain : the set of all integers
Codomain : set of all integers
Range: all integers that are perfect squares, i.e., $\{0,1,4,9, \ldots\}$

Suppose that each student in a class is assigned a letter grade from the set $\{\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}, \boldsymbol{F}\}$. Let \boldsymbol{g} be the function that assigns a grade to a student.

EXAMPLES

Domain

Some function..

Not a valid function! Also not a valid function!

- Specify a function by
- Domain
- Codomain
- Mapping of elements
- Two functions are equal if they have Same domain, codomain, mapping of elements

Quiz (1)

1. Why is f not a function from R to R if
a) $f(x)=1 / x$?
b) $f(x)=\sqrt{x}$?

- Two real-valued functions with the same domain can be added and multiplied
Let f_{1} and f_{2} be functions from A to \boldsymbol{R}, then $f_{1}+f_{2}$, and $f_{1} f_{2}$ are also functions from A to \boldsymbol{R} defined by

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)(x) & =f_{1}(x)+f_{2}(x) \\
\left(f_{1} f_{2}\right)(x) & =f_{1}(x) f_{2}(x)
\end{aligned}
$$

Note that the functions $f_{1}+f_{2}$ and $f_{1} f_{2}$ at x are defined in terms f_{1} and f_{2} at x

EXAMPLE

Let f_{1} and f_{2} be functions from \mathbf{R} to \mathbf{R} such that $f_{1}(x)=x^{2}$ and $f_{2}(x)=x-x^{2}$. What are the functions $f_{1}+f_{2}$ and $f_{1} f_{2}$?

From the definition of the sum and product of functions, it follows that

$$
\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)=x^{2}+\left(x-x^{2}\right)=x
$$

and

$$
\left(f_{1} f_{2}\right)(x)=x^{2}\left(x-x^{2}\right)=x^{3}-x^{4}
$$

Let f be a function from A to B and let S be a subset of A. The image of S under the function f :
is the subset of B that consists of the images of the elements of S .
We denote the image of S by $f(S)$, so

$$
f(S)=\{t \mid \exists s \in S(t=f(s))\} .
$$

We also use the shorthand $\{f(s) \mid s \in S\}$ to denote this set.

Remark: $f(S)$ denotes a set, and not the value of the function f for the set S .

EXAMPLES

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ and $\mathrm{B}=\{1,2,3,4\}$ with $\mathrm{f}(\mathrm{a})=2, \mathrm{f}(\mathrm{b})=1, \mathrm{f}(\mathrm{c})=4$, $f(d)=1$, and $f(e)=1$. The image of the subset $S=\{b, c, d\}$ is the set $f(S)=\{1,4\}$.

- One-to-One and Onto Functions

Injections and Surjections

In this section we consider two special kinds of functions: 'injections' and 'surjections'. a function $f: A \rightarrow B$ can be such that:
(i) different elements of the domain may have the same image in the codomain;
(ii) there may be elements of the codomain which are not the image of any element of the domain.

(a)

(b)

DEFINITION

A function f is said to be one-to-one, or an injunction, if and only if $f(a)=f(b)$ implies that $a=b$ for all a and b in the domain of f . A function is said to be injective if it is one-to-one.

Remark: We can express that f is one-to-one using quantifiers as $\forall a \forall b(f(a)=f(b) \rightarrow a=b)$ or using the contrapositive equivalently $\forall a \forall b(a \neq b \rightarrow f(a) \neq f(b))$,

- Every element of B is the image of a unique element of A

$$
\begin{aligned}
& \text { A function is one-to-one if each element in the } \\
& \text { co-domain has a unique pre-image } \\
& \text { - Meaning no } 2 \text { values map to the same result }
\end{aligned}
$$

A one-to-one function

A function that is not one-tio-ome

EXAMPLES

- Determine whether the function $\mathrm{f}(\mathrm{x})=x^{2}$ from the set of integers to the set of integers is one-to-one.
The function $\mathrm{f}(\mathrm{x})=x^{2}$ is not one-to-one because, for instance,

$$
\mathrm{f}(1)=\mathrm{f}(-1)=1, \text { but } 1 \neq-1
$$

- Determine whether the function $\mathrm{f}(\mathrm{x})=x^{2}$ from the set of positive integers to the set of integers is one-to-one ????.
- Determine whether the function $\mathrm{f}(x)=x+1$ from the set of real numbers to itself is one-to one.

The function $f(x)=x+1$ is a one-to-one function. To demonstrate this, note that $x+1 \neq y+1$ when $x \neq y$

Increasing/decreasing functions

Increasing (decreasing): if $f(x) \leq f(y)(f(x) \geq f(y)$), whenever $\mathrm{x}<\mathrm{y}$ and x, y are in the domain of f
Strictly increasing (decreasing): if $\mathrm{f}(\mathrm{x})<\mathrm{f}(\mathrm{y})(\mathrm{f}(\mathrm{x})>\mathrm{f}(\mathrm{y}))$ whenever $\mathrm{x}<\mathrm{y}$, and x, y are in the domain of f

A function that is either strictly increasing or decreasing must be one-to-one

Remark: A function f is increasing if $\forall x \forall y(x<y \rightarrow f(x) \leq f(y))$, strictly increasing if $\forall x \forall y(x<y \rightarrow f(x)<f(y))$, decreasing if $\forall x \forall y(x<y \rightarrow f(x) \geq f(y))$, and strictly decreasing if $\forall x \forall y(x<y \rightarrow f(x)>f(y))$, where the universe of discourse is the domain of f.

Onto functions

A function f from A to B is called onto, or a surjection, if and only if for every element $\mathrm{b} \in \mathrm{B}$ there is an element $a \in A$ with $\mathrm{f}(\mathrm{a})=\mathrm{b}$. A function f is called surjective if it is onto.

Remark: A function f is onto if

$$
\forall y \exists x(f(x)=y) \text {, }
$$

where the domain for x is the domain of the function and the domain for y is the codomain of the function.

Codomain $=$ range!

EXAMPLES

f maps from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ to $\{1,2,3\}$, is f onto?

A function is onto if each element in the codomain is an image of some pre-image

- Meaning all elements in the right are mapped to

An onto function

A function that is not onto

- Is the function $\mathrm{f}(x)=x^{2}$ from the set of integers to the set of integers onto?

Is it true that $\forall y \exists x\left(x^{2}=\mathrm{y}\right)$?
The function f is not onto because there is no integer x with $x^{2}=-1$, for instance.
-1 is one of the possible values of y, but there does not exists an x such that $x^{2}=-1$

- Is $f(x)=x+1$ from the set of integers to the set of integers onto?
- It is onto, as for each integer y there is an integer x such that $\mathrm{f}(x)=y$
- To see this, $f(x)=y$ iff $x+1=y$, which holds if and only if $x=y-1$

Lecture 4
(a) One-to-one, not onto

(b) Onto, not one-to-one

(c) One-to-one, and onto

(e) Not a function

One-to-one correspondence

The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto. We also say that such a function is bijective.

- Let f be the function from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ to $\{1,2,3,4\}$ with $\mathrm{f}(\mathrm{a})=4$, $\mathrm{f}(\mathrm{b})=2, \mathrm{f}(\mathrm{c})=1$, and $\mathrm{f}(\mathrm{d})=3$, is f bijective?
- It is one-to-one as no two values in the domain are assigned the same function value
- It is onto as all four elements of the codomain are images of elements in the domain

Identity function:

It is one-to-one and onto

$$
\imath_{A}: A \rightarrow A, \imath_{A}(x)=x, \forall x \in A
$$

we summarize what needs be to shown to establish whether a function is one-to-one and whether it is onto.

Suppose that $f: A \rightarrow B$.
To show that f is injective Show that if $f(x)=f(y)$ for arbitrary $x, y \in A$ with $x \neq y$, then $x=y$.
To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and $f(x)=f(y)$.
To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x)=y$.
To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Determine whether each of these functions is a bijection from R to R.
a) $f(x)=2 x+1$
b) $f(x)=x^{2}+1$
c) $f(x)=x^{3}$

Consider a one-to-one correspondence f from A to B
Since f is onto, every element of B is the image of some element in A
Since f is one-to-one, every element of B is the image of a unique element of A
Thus, we can define a new function from B to A that reverses the correspondence given by f

DEFINITION

Let f be a one-to-one correspondence from the set A to the set B The inverse function of f is the function that assigns an element b belonging

Lecture 5
 to B the unique element a in A such that $f(a)=b$
Denoted by f^{1}, hence $f^{l}(b)=a$ when $f(a)=b$
Note f^{l} is not the same as $1 / f$

- A one-to-one correspondence is called invertible

Why can't we invert such a function?
We cannot assign to each element b in the codomain a unique element a in the domain such that $f(a)=b$, because:

- For some b there is either
- More than one a
- No such a

EXAMPLES

- f is a function from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ to $\{1,2,3\}$ with $\mathrm{f}(\mathrm{a})=2, \mathrm{f}(\mathrm{b})=3$, $\mathrm{f}(\mathrm{c})=1$. Is it invertible? What is it its inverse?
The function f is invertible because it is a one-to-one correspondence. The inverse function f^{-1} reverses the correspondence given by f ,so
$f^{-1}(1)=\mathrm{c}, f^{-1}(2)=\mathrm{a}$, and $f^{-1}(3)=\mathrm{b}$.
- Let $f: Z \rightarrow Z$ such that $f(x)=x+1$, Is f invertible? If so, what is its inverse?

$$
y=x+1, x=y-1, f^{1}(y)=y-1
$$

- Let $f: R \rightarrow R$ with $f(x)=x^{2}$, Is it invertible?

Since $f(2)=f(-2)=4$, f is not one-to-one, and so not invertible

- Sometimes we restrict the domain or the codomain of a function or both, to have an invertible function The function $f(x)=x^{2}$, from R^{+}to R^{+}is
- one-to-one : If $f(x)=f(y)$, then $x^{2}=y^{2}$, so $x^{2}-y^{2}=(x-y)(x+y)$ then $\mathrm{x}+\mathrm{y}=0$ or $\mathrm{x}-\mathrm{y}=0$, so $\mathrm{x}=-\mathrm{y}$ or $\mathrm{x}=\mathrm{y}$ Because both x and y are nonnegative, we must have $x=y$ onto: $\mathrm{y}=\mathrm{x}^{2}$, every non-negative real number has a square root inverse function: $\mathrm{x}=f^{-1}(y)=\sqrt{y}$.

Composition of functions

Let g be a function from A to B and f be a function from B to C, the composition of the functions f and g, denoted by $f \circ g$, is defined by

$$
(f \circ g)(a)=f(g(a))
$$

- First apply g to a to obtain $g(a)$
- Then apply f to $g(a)$ to obtain $(f \circ g)(a)=f(g(a))$

Note $f \circ g$ cannot be defined unless the range of g is a subset of

EXAMPLES

Dr. Mohamed $\mathcal{A} 6 d e l-\mathcal{A} a l$ Discrete Mathematics

- $g:\{a, b, c\} \rightarrow\{a, b, c\}, g(a)=b, g(b)=c, g(c)=a$, and $\mathrm{f}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \rightarrow\{1,2,3\}, \mathrm{f}(\mathrm{a})=3, \mathrm{f}(\mathrm{b})=2, \mathrm{f}(\mathrm{c})=1$.
What are $f \circ g$ and $g \circ f$?
$(f \circ g)(a)=f(g(a))=f(b)=2$, $(f \circ g)(b)=f(g(b))=f(c)=1$, $(f \circ g)(c)=f(a)=3$
$(g \circ f)(a)=g(f(a))=g(3)$ not defined. $g \circ f$ is not defined
Note that $g \circ f$ is not defined, because the range of f is not a subset of the domain of g
- $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3, \mathrm{~g}(\mathrm{x})=3 \mathrm{x}+2$. What are $f \circ g$ and $g \circ f$?

$$
\begin{aligned}
& (f \circ g)(x)=f(g(x))=f(3 x+2)=2(3 x+2)+3=6 x+7 \\
& (g \circ f)(x)=g(f(x))=g(2 x+3)=3(2 x+3)+2=6 x+11
\end{aligned}
$$

Note that $f \circ g$ and $g \circ f$ are defined in this example, but they are not equal The commutative law does not hold for composition of functions

Composition of Inverses

$f \circ f^{-1}$ form an identity function in any order

$$
\text { Let } f: A \rightarrow B \text { with } f(a)=b
$$

Suppose f is one-to-one correspondence from A to B
Then f^{l} is one-to-one correspondence from B to A
The inverse function reverses the correspondence of f, so $f^{l}(b)=a$ when $f(a)=b$, and $f(a)=b$ when $f^{l}(b)=a$

$$
\left(f^{1} \circ f\right)(a)=f^{1}(f(a))=f^{-1}(b)=a
$$

and

$$
\left.\left(f \circ f^{1}\right)(b)=f\left(f^{-1}\right)(b)\right)=f(a)=b
$$

$$
\begin{aligned}
& f^{-1} \circ f=l_{A}, f \circ f^{-1}=t_{B}, l_{A}, l_{B} \text { are identity functions of } \mathrm{A} \text { and } \mathrm{B} \\
& \left(f^{-1}\right)^{-1}=f
\end{aligned}
$$

Important functions - Floor

Let x be a real number. The floor function is the closest integer less than or equal to x.

Examples

$$
\begin{aligned}
& \lfloor 1 / 2\rfloor=0 \\
& \lfloor-1 / 2\rfloor=? \\
& \lfloor 3.1\rfloor=? \\
& \lfloor 7\rfloor=?
\end{aligned}
$$

Important functions - Ceiling

Let x be a real number. The ceiling function is the closest integer greater than or equal to x.

Examples

$$
\begin{aligned}
& \lceil 1 / 2\rceil=1 \\
& \lceil-1 / 2\rceil=? \\
& \lceil 3.1\rceil=? \\
& \lceil 7\rceil=?
\end{aligned}
$$

TABLE 1 Useful Properties of the Floor and Ceiling Functions.
(n is an integer)
(1a) $\lfloor x\rfloor=n$ if and only if $n \leq x<n+1$
(1b) $\lceil x\rceil=n$ if and only if $n-1<x \leq n$
(1c) $\lfloor x\rfloor=n$ if and only if $x-1<n \leq x$
(1d) $\lceil x\rceil=n$ if and only if $x \leq n<x+1$
(2) $x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1$
(3a) $\lfloor-x\rfloor=-\lceil x\rceil$
(3b) $\lceil-x\rceil=-\lfloor x\rfloor$
(4a) $\lfloor x+n\rfloor=\lfloor x\rfloor+n$
(4b) $\lceil x+n\rceil=\lceil x\rceil+n$

(a) $y=[x]$

(b) $y=[x]$

Graphs of the (a) Floor and (b) Ceiling Functions.

Quiz (3)
8. Find these values.
a) $\lfloor 1.1\rfloor$
c) $\lfloor-0.1\rfloor$
e) $\lceil 2.99\rceil$
g) $\left\lfloor\frac{1}{2}+\left\lceil\frac{1}{2}\right\rceil\right\rfloor$
b) $\lceil 1.1\rceil$
d) $\lceil-0.1\rceil$
f) $\lceil-2.99\rceil$
h) $\left\lceil\left\lfloor\frac{1}{2}\right\rfloor+\left\lceil\frac{1}{2}\right\rceil+\frac{1}{2}\right\rceil$

Prove that if n is an integer, then $\lfloor n / 2\rfloor=n / 2$ if n is even and $(n-1) / 2$ if n is odd.

The Graphs of Functions

Let f be a function from the set A to the set B.
The graph of the function f is the set of ordered pairs

$$
\{(a, b) \mid a \in A \text { and } f(a)=b\}
$$

EXAMPLES

1. Display the graph of the function $f(n)=2 n+l$ from the set of integers to the set of integers.
The graph of f is the set of ordered pairs of the form ($n, 2 n+1$), where n is an integer.
2. Display the graph of the function $f(x)=x^{2}$ from the set of integers to the set of integers.

The graph of f is the set of ordered pairs of the form $(x, f(x))=\left(x, x^{2}\right)$, where x is an integer.

FIGURE 8 The Graph of

 $f(n)=2 n+1$ from Z to Z.

FIGURE 9 The Graph of $f(x)=x^{2}$ from Z to Z.

Sequences

A sequence is a discrete structure used to represent an ordered list. For example, $1,2,3,5,8$ is a sequence with five terms and $1,3,9$, $27,81, \ldots, 3 \mathrm{n}, \ldots$ is an infinite sequence

- If the domain of a function is restricted to a subset of the set of integers (usually either the set $\{0,1,2, \ldots\}$ or the set $\{1,2,3, \ldots\}$) to a set S, the function is called a sequence
- The domain is specifically the set \mathbf{N} or the set Z^{+}.
- a_{n} denotes the image of n-called a term of the sequence
- Notation for whole sequence: $\left\{a_{n}\right\}$
- a_{n} is called the $n^{\text {th }}$ term or general term.

EXAMPLES

- Let $\left\{a_{n}\right\}$ be a sequence, where

$$
a_{n}=1 / n \quad \text { and } \quad n \in \mathbf{Z}^{+}
$$

- What are the terms of the sequence?

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=1 / 2 \\
& a_{3}=1 / 3 \\
& a_{4}=1 / 4
\end{aligned}
$$

$$
\text { Lecture } 5
$$

Geometric progression

A geometric progression is a sequence of the form

$$
a, a r, a r^{2}, \ldots, a r^{n}, \ldots
$$

where the initial term a and the common ratio r are real numbers.

- Can be written as $f(x)=a \cdot r^{x}$

Example

- The sequences $\left\{b_{n}\right\}$ with $\mathrm{b}_{\mathrm{n}}=(-1)^{\mathrm{n}},\left\{\mathrm{c}_{\mathrm{n}}\right\}$ with $\mathrm{c}_{\mathrm{n}}=2 * 5^{\mathrm{n}}$, $\left\{d_{n}\right\}$ with $d_{n}=6 *(1 / 3)^{n}$ are geometric progression
$-b_{n}: 1,-1,1,-1,1, \ldots$
$-c_{n}: 2,10,50,250,1250, \ldots$
$-d_{n:} 6,2,2 / 3,2 / 9,2 / 27, \ldots$

Arithmetic progression

An arithmetic progression is a sequence of the form

$$
a, a+d, a+2 d, \ldots, a+n d, \ldots
$$

where the initial term a and the common difference d are real numbers.
Remark: An arithmetic progression is a discrete analogue of the linear function $f(x)=d x+a$.

Example

Let $\left\{a_{n}\right\}$ be a sequence, where $a_{n}=-1+4 n$

- What type of progression is this? (Arithmetic)
- What is the initial term? (-1)
- What is the common ratio/difference? (4)
- What are the terms of the sequence? $(-1,3,7,11, \ldots)$
- Let $\left\{t_{n}\right\}$ be a sequence, where $t_{n}=7-3 n$
- What type of progression is this? (Arithmetic)
- What is the initial term? (7)
- What is the common ratio/difference? (-3)
- What are the terms of the sequence? $(7,4,1,-2, \ldots)$

String

Sequences of the form $a_{1}, a_{2}, \ldots, a_{n}$ are often used in computer science These finite sequences of bits are also called strings The length of the string S is the number of terms The empty string, denoted by $\boldsymbol{\lambda}$, is the string has no terms and has length zero.

- The string abcd is a string of length four.

Example

(c) The terms alternate between 1 and -1 . The sequence with a

$$
a_{n}=(-1)^{n}, n=0,1,2 \ldots
$$

What is the initial term? (1)

- What is the common ratio/difference? $(\mathrm{r}=-1)$

What is the formula? $\left(a_{n}=(-1)^{n} n=0,1,2 \ldots\right)$
How can we produce the terms of a sequence if the first 10 terms are $5,11,17,23,29,35,41,47,53,59$?

Solution: Note that each of the first 10 terms of this sequence after the first is obtained by adding 6 to the previous term. (We could see this by noticing that the difference between consecutive terms is 6 .) Consequently, the nth term could be produced by starting with 5 and adding 6 a total of $n-1$ times; that is, a reasonable guess is that the $n t h$ term is $5+6(n-1)=6 n-1$. (This is an arithmetic progression with $\mathrm{a}=5$ and $\mathrm{d}=6$.)

TABLE 1 Some Useful Sequences.

$n t h$ Term	First 10 Terms
n^{2}	$1,4,9,16,25,36,49,64,81,100, \ldots$
n^{3}	$1,8,27,64,125,216,343,512,729,1000, \ldots$
n^{4}	$1,16,81,256,625,1296,2401,4096,6561,10000, \ldots$
2^{n}	$2,4,8,16,32,64,128,256,512,1024, \ldots$
3^{n}	$3,9,27,81,243,729,2187,6561,19683,59049, \ldots$
$n!$	$1,2,6,24,120,720,5040,40320,362880,3628800, \ldots$
f_{n}	$1,1,2,3,5,8,13,21,34,55,89, \ldots$

Summations

A summation denotes the sum of the terms of a sequence.

from the sequence $\left\{a_{n}\right\}$. We use the notation

$$
\sum_{j=m}^{n} a_{j}, \quad \sum_{j=m}^{n} a_{j}, \quad \text { or } \quad \sum_{m \leq j \leq n} a_{j}
$$

(read as the sum from $j=m$ to $j=n$ of a_{j}) to represent

$$
a_{m}+a_{m+1}+\cdots+a_{n}
$$

Example

- Express the sum of the first 100 terms of the sequence $\left\{a_{n}\right\}$ where $a_{n}=1 / n, n=1,2,3, \ldots$

Lecture 5
The lower limit for the index of summation is 1 , and the upper limit is 100 . We write this sum as

$$
\sum_{j=1}^{100} \frac{1}{j} .
$$

- What is the value of $\sum_{k=4}^{8}(-1)^{k}$?

$$
\begin{aligned}
\sum_{k=4}^{8}(-1)^{k} & =(-1)^{4}+(-1)^{5}+(-1)^{6}+(-1)^{7}+(-1)^{8} \\
& =1+(-1)+1+(-1)+1 \\
& =1
\end{aligned}
$$

- What is the value of $\sum_{k=1}^{s} k^{2}$

$$
\sum_{k=1}^{5} k^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=1+4+9+16+25=55
$$

\square When shifting an index of summation, it is important to make the appropriate changes in the corresponding summand.
but want the index of summation to run between 0 and 4 rather than from 1 to 5 . To do this, we let $k=j-1$. Then the new summation index runs from 0 (because $\mathrm{k}=1$ $-0=0$ when $\mathrm{j}=1$) to 4 (because $\mathrm{k}=5-1=4$ when $\mathrm{j}=5$), and the term j^{2} becomes $(\mathrm{k}+1)^{2}$. Hence,

$$
\sum_{j=1}^{5} j^{2}=\sum_{k=0}^{4}(k+1)^{2}
$$

Geometric Series

The sum of a geometric progression is called a geometric series

- Commonly used

$$
\begin{aligned}
S= & \sum_{j=0}^{n} a r^{j}=a r^{0}+a r^{1}+a r^{2}+\ldots+a r^{n} \\
r S_{n} & =r \sum_{j=0}^{n} a r^{j} \quad \text { substituting summation formula for } s \\
& =\sum_{j=0}^{n} a r^{j+1} \quad \text { by the distributive property } \\
& =\sum_{k=1}^{n+1} a r^{k} \quad \\
& =\left(\sum_{k=0}^{n} a r^{k}\right)+\left(a r^{n+1}-a\right) \quad \text { remifting the index of summation, with } k=j+1 \\
& =S_{n}+\left(a r^{n+1}-a\right) \quad \text { substituting } S \text { for summation formula }
\end{aligned}
$$

Solving for S_{n} shows that if $r \neq 1$, then

$$
S_{n}=\frac{a r^{n+1}-a}{r-1}
$$

$$
\sum_{j=0}^{n} a r^{j}=\left\{\begin{array}{cc}
\frac{a r^{n+1}-a}{r-1} & \text { if } r \neq 1 \\
(n+1) a & \text { if } r=1
\end{array}\right.
$$

If $r=1$, then the $S_{n}=\sum_{j=0}^{n} a r^{j}=\sum_{j=0}^{n} a=(n+1) a$.

Double Summation

- Often used in programs

$$
\begin{aligned}
& \sum_{i=1}^{4} \sum_{j=1}^{3} i j=\sum_{i=1}^{4}(i+2 i+3 i) \\
= & \sum_{i=1}^{4} 6 i=6+12+18+24=60
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{i=1}^{3} \sum_{j=1}^{2}(i-j) \\
& \begin{aligned}
\sum_{j=1}^{2}(i-j)= & (i-1)+(i-2)=2 i-3 \\
\sum_{i=1}^{3}(2 i-3) & =(2 \cdot 1-3)+(2 \cdot 2-3)+(2 \cdot 3-3) \\
& =-1+1+3=3
\end{aligned}
\end{aligned}
$$

TABLE 2 Some Useful Summation

Formulae.

Sum	Closed Form
$\sum_{k=0}^{n} a r^{k}(r \neq 0)$	$\frac{a r^{n+1}-a}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^{2}$	$\frac{n(n+1)(2 n+1)}{6}$
$\sum_{k=1}^{n} k^{3}$	$\frac{n^{2}(n+1)^{2}}{4}$
$\sum_{k=0}^{\infty} x^{k},\|x\|<1$	$\frac{1}{1-x}$
$\sum_{k=1}^{\infty}, k x^{k-1},\|x\|<1$	$\frac{1}{(1-x)^{2}}$

Examples

1. Find $\sum_{k=0}^{100} k^{2}$

$$
\begin{gathered}
\sum_{k=50}^{100} k^{2}=\sum_{k=1}^{100} k^{2}-\sum_{k=1}^{49} k^{2}=\frac{100 \cdot 101 \cdot 201}{6}-\frac{49 \cdot 50 \cdot 99}{6}=338350-40425=297925 \\
\sum_{k=1}^{n} k^{2}=n(n+1)(2 n+1) / 6 \text { from Table } 2
\end{gathered}
$$

2. Let x be a real number with $|x|<1$, Find $\sum_{n=0}^{\infty} x^{n}$

$$
\sum_{j=0}^{n} a r^{j}=\left\{\begin{array}{cl}
\frac{a r^{n+1}-a}{r-1} & \text { if } r \neq 1 \\
(n+1) a & \text { if } r=1
\end{array}, \quad \sum_{n=0}^{k} x^{n}=\frac{x^{k+1}-1}{x-1}, \quad \sum_{n=0}^{\infty} x^{n}=\lim _{k \rightarrow \infty} \frac{x^{k+1}-1}{x-1}=\frac{-1}{x-1}=\frac{1}{1-x}\right.
$$

Differentiating both sides of $\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}$

$$
\sum_{k=0}^{\infty} k x^{k-1}=\frac{1}{(1-x)^{2}}
$$

What are the values of these sums?
a) $\sum_{k=1}^{5}(k+1)$
b) $\sum_{j=0}^{4}(-2)^{j}$
c) $\sum_{i=1}^{10} 3$
d) $\sum_{j=0}^{8}\left(2^{j+1}-2^{j}\right)$

